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Abstract

A modified version of the traditional wave vector computational scheme for the dynamic analysis of long
undamped periodic structures is presented. First, the consistency of the complex wave vector mathematical
formulation is discussed, placing particular emphasis on the real or complex nature of the resulting
characteristic equation from which the natural frequencies are derived. It is shown that the rearrangement
in terms of complex waves entering the domain, devised to overcome ill-conditioning arising in the transfer
matrix formulation, entails as a side effect an ill-posed problem, as it leads to a complex characteristic
equation in a real unknown. Next, the proposed approach is described. It provides for transformation of
frequency-dependent real transfer matrices for state vectors to real transfer matrices for wave vectors, thus
avoiding an ill-conditioned and ill-posed problem. Finally, applications to mono-coupled and bi-coupled
structures are illustrated, aiming at comparing the proposed method with the transfer matrix and complex
wave vector approaches.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The well-known wave vector approach has been proposed [1,2] for the analysis of the response
of long undamped periodic structures to overcome numerical difficulties arising in the transfer
matrix formulation when the number of periodic units increases. Its effectiveness has been
confirmed by a number of applications pertaining to trusses [3,4], generic structural networks [5],
wave localization phenomena [6] and piecewise periodic structures [7]. Nevertheless, a number of
authors have encountered numerical difficulties to determine the natural frequencies when solving
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the complex determinant resulting from the wave vector approach. For finite truss beams, Pierre
and Chen [8] ascribed such difficulties to the high modal density. They observed that the zeros of
the real and imaginary parts of the characteristic equation were not even close enough to derive
natural frequencies yielding accurate mode shapes; to circumvent the problem they transformed
the latter determinant into a real one. Moreover, Signorelli and von Flotow [3] considered the
absolute value of the complex characteristic determinant stating that the natural frequencies of the
truss need to be identified whenever it ‘‘tends’’ to vanish.
In this work, the causes of such drawbacks are investigated. It is shown that numerical

difficulties are due to the ill-posed mathematical problem in terms of complex waves incoming in
the structure. In fact, according to this method, natural frequencies are found as real solutions of
complex characteristic equations, i.e. as a solution of a system of two equations in just one
unknown. Aiming to overcome such problems while retaining the advantages of the wave transfer
matrix framework, a modified version of the traditional wave vector computational scheme is
proposed. The method deals with real quantities only, thus avoiding the described pathology. In
particular, while the traditional method implies the transformation of frequency-dependent real
transfer matrices for state vectors to complex transfer matrices for wave vectors, the approach
proposed here provides for transformation to real matrices. In essence the computational
scheme adopts a basis of eigenvectors coinciding with the real and imaginary parts of the transfer
matrix complex eigenvectors thereby leading to a real block-diagonal matrix. The blocks
associated with eigenvalues with modulus greater than one are inverted, while those associated
with unit modulus eigenvalues are left unaltered because they do not feed ill-conditioning. As a
consequence a two-fold objective is pursued. On one hand, the obtained real boundary
condition’s matrix is more suited for free vibration analysis; on the other hand, the stability of
computations, assured by proceeding in the direction of wave motion, is preserved. The proposed
transformation can also be interpreted as a change of co-ordinates that brings the linear map
xkþ1 ¼ Txk into a normal form, xk being the state vector at the coupling point k and T the
transfer matrix.
The paper is organized as follows. In Section 2 the mechanism leading to an ill-posed problem is

discussed in a broader context, by dealing with steady-waves analysis of an axially vibrating rod.
The proposed real wave vector approach is described in Section 3 for generic n-coupled periodic
structures. By comparing this approach with the earlier one [1,2], whose main steps are outlined in
the appendix, the differences between the two algorithms are highlighted. Afterwards, in Section
4, an illustrative analytical application to a mono-coupled mass–spring chain is presented. Finally,
numerical simulations pertaining free and forced vibration analysis of bi-coupled periodic beams
resting on elastic supports are reported in Section 5. Throughout all the examples the emphasis is
placed on the comparison among the features of the transfer matrix, complex and real wave vector
approaches.

2. An introductory problem: real and complex formulations

With the aim of introducing the problem, consider the free axial vibrations of a free–free rod of
length l: They are governed by the following boundary value problem:

ARTICLE IN PRESS

A. Luongo, F. Romeo / Journal of Sound and Vibration 279 (2005) 309–325310



u00ðxÞ þ b2uðxÞ ¼ 0 xA½0; l�;

u0ð0Þ ¼ 0; u0ðlÞ ¼ 0; ð1Þ

in which b is the eigenvalue, proportional to the time–frequency o: Solutions to Eq. (1) can be put
in different forms, here named real, complex and modified complex forms, summarized in Table 1.
If the field uðxÞ is expressed in the real form (equation ða1Þ), the boundary conditions (1b) lead to
the real eigenvalue problem ðb1Þ; whose real characteristic equation ðc1Þ admits the roots:

W ¼
jp
N

with j ¼ 0; 1;y : ð2Þ

Alternatively, the solution can be expressed in the complex form ða2Þ: In it, eibx and e�ibx are
steady waves (conventionally) propagating rightward and leftward respectively. Their complex
amplitudes, rA and lA; represent the contribution of each wave to the displacement at the left end
A of the road, where eibx and e�ibx assume unit values. By enforcing boundary conditions, the
equations ðb2Þ are drawn. In them, the columns of the matrix are linear combinations of the
columns of the matrix in equation ðb1Þ; hence the same real characteristic equation ðc2Þ follows.
Therefore, the real and complex forms are equivalent. Finally, a modified complex form of the
solution is considered (equation ða3Þ), derived from equation ða2Þ by letting lA :¼ lBe

ibl : This
change in the complex amplitudes is often performed in order to avoid numerical ill-conditioning
in the boundary conditions when l is large and b is allowed to assume complex values (e.g. for
long beams resting on Winkler soil, or for long tubes with radially symmetric loads). In fact, the
modification renders complex amplitudes of the same order of magnitude otherwise very different
from each other. By again enforcing boundary conditions, equations ðb3Þ are drawn. They could
be obtained directly from equations ðb2Þ through the product of the second column of the matrix
by the factor eibl ; which transforms lA into lB: Since the factor is complex, the associated
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Table 1

Standing waves in a free–free rod

Solution Boundary conditions Characteristic equation

Real form

u ¼ a cosbx þ b sin bx

a; bAR

0 1
�sin bl cos bl

� �
a

b

� �
¼ 0

sin bl ¼ 0

ða1Þ ðb1Þ ðc1Þ

Complex form

u ¼ rA eibx þ lAe
�ibx

rA; lAAC

1 �1
eibl �e�ibl

� �
rA

lA

� �
¼ 0

eibl � e�ibl ¼ 0

ða2Þ ðb2Þ ðc2Þ

Modified complex form

u ¼ rAe
ibx þ lBe

�ibðx�lÞ

rA; lBAC

1 �eibl

eibl �1

� �
rA

lB

� �
¼ 0

e2ibl � 1 ¼ 0

ða3Þ ðb3Þ ðc3Þ
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characteristic equation ðc3Þ; differently from the previous cases, is also complex. It leads to two
real equations in the unique real unknown b; namely:

cos 2bl ¼ 1; sin 2bl ¼ 0: ð3Þ

Problem (3) appears as an overdetermined non-linear system, since it requires satisfying two
simultaneous equations with just one unknown. It will be referred to as ill-posed, since the true
nature of the determined system is disguised. In principle, no solutions exist for such a problem;
however, it is easy to check that Eqs. (3) do admit solutions, and these all coincide with the
solutions (2). This circumstance is a consequence of the fact that, since a column of the matrix in
equation ðb2Þ has been altered by eibl ; also its characteristic equation ðc2Þ has been multiplied by
the same factor, so that equation ðc3Þ admits the factorized form:

eiblðeibl � e�iblÞ ¼ 0: ð4Þ

Since the factor never vanishes, Eq. (4) admits the same roots of equation ðc2Þ and no other ones.
However, in more complex cases than that at hand, it is not easy to factorize the characteristic
equation, and one has to solve a problem of the following form:

f ðoÞ þ igðoÞ ¼ 0; ð5Þ

where o is the unknown. There are two ways to solve this equation: (a) to search for complex
roots o ¼ gþ id of the simultaneous equations Reðf Þ � ImðgÞ ¼ 0; Imðf Þ þReðgÞ ¼ 0; by
retaining only the real solutions ga0; d ¼ 0; (b) to search for real roots o of each equation
f ðoÞ ¼ 0 and gðoÞ ¼ 0; by keeping only the common roots. Numerical problems arise in both the
approaches, since it is difficult to decide whether roots with small g’s (in the approach (a)) or roots
very close to each other (in the approach (b)) must be retained or rejected. Such difficulties were
encountered in the works cited in the Introduction, as a consequence of the ill-position of the
problem.
In conclusion, the complexity of the characteristic equation does not depend on the complexity

of the amplitudes, but rather on their rearrangement. The expedient of the change of the variables
is a peculiar aspect of the complex wave coordinate method; it permits the avoidance of numerical
ill-conditioning, but entails an ill-posed problem. In the next section a variant of the method is
illustrated, able to avoid an ill-conditioned and ill-posed problem.

3. Real wave vector approach

For periodic structures, the state vectors xk ¼ ðdk; fkÞ; listing generalized displacements d and
forces f at the coupling point k; is related to the state vector xkþ1; at the following coupling point
k þ 1; through the transfer matrix T; i.e. xkþ1 ¼ Txk: For elements coupled through n degrees of
freedom, T is a real 2n 	 2n frequency dependent matrix and, if the structure is composed by N

elements connecting nodes A and B; then

dB

fB

 !
¼ TN

dA

fA

 !
: ð6Þ
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A peculiar property of the transfer matrix is that its eigenvalues are reciprocal pairs ðl; 1=lÞ: The
case of distinct eigenvalues will be considered throughout the analysis. According to the well-
known complex wave vectors approach (see the appendix), the state vectors can be transformed to
complex wave vectors through a matrix whose columns are the complex eigenvectors of T: The
obtained wave vector ðrk; lkÞ

T; at the generic coupling point k; has components r and l hinting at
right-going and left-going waves, respectively (see Fig. 1(a)). They represent the amplitudes of the
eigenvectors associated to reciprocal pairs with jljo1 and jlj > 1; respectively; if jlj ¼ 1; the two
reciprocal eigenvalues are complex conjugate and the associated amplitudes split in r and l:
An alternative transformation can be adopted relying on a modified basis of eigenvectors.

Consider the generic case of T with 2nr real eigenvalues l ¼ r; 1=r; 2nc complex eigenvalues
l ¼ re7iy; 1=re8iy with ro1 and 2nu complex eigenvalues with unit modulus l ¼ e7iy: Let also uh

and u�h ; h ¼ 1;y; nr; be the real eigenvectors of T associated with the real eigenvalues rh and 1=rh;
respectively; zj and z

�
j ; j ¼ 1;y; nc; be the complex eigenvectors associated with the eigenvalues

rje
7iyj ; 1=rj e

8iyj ; respectively; yl ; l ¼ 1;y; 2nu; be the complex eigenvectors associated with the
eigenvalues e7iyl : By setting up the invertible matrix U in the form

U ¼ uh;ReðzjÞ; ImðzjÞ; ReðylÞ; ImðylÞ; u
�
h ; Reðz�j Þ; Imðz�j Þ

h i
; ð7Þ

it is well known that it is possible to obtain a matrix

U�1TU ¼ diagðlh;Cj; Pl ; l�1h ; C�1
j Þ; ð8Þ

representing a real transfer matrix for wave vectors. In Eq. (8) Cj; 1pjpnc; are 2	 2 blocks:

Cj ¼ rj

cos yj sin yj

�sin yj cos yj

" #
; ð9Þ

and Pl ; 1plp2nu; are submatrices equal to Cj with r ¼ 1: The state vector transformation can
now be expressed through a new change of co-ordinates to real wave vector using the real matrix
U as

dk

fk

 !
¼ Uðrrk; r

c
k; r

u
k; l

r
k; l

c
kÞ
T; ð10Þ

where the real wave vector at node k has been partitioned into five subvectors rrk; r
c
k; r

u
k; l

r
k and l

c
k;

representing the amplitudes of the eigenvectors uh; zj; yl ; u
�
h and z�j ; respectively (see Fig. 1(b)).
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Fig. 1. Wave vector components: (a) complex; (b) real.
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Substituting Eq. (10) into Eq. (6) gives

rrB

rcB

ruB

lrB

lcB

0
BBBBBB@

1
CCCCCCA

¼

SN 0 0 0 0

0 CN 0 0 0

0 0 PN 0 0

0 0 0 S�N 0

0 0 0 0 C�N

2
66666664

3
77777775

rrA

rcA

ruA

lrA

lcA

0
BBBBBB@

1
CCCCCCA
; ð11Þ

where the square submatrices in the global wave transfer matrix U�1TNU are defined as SN ¼
diagðrN

1 ;y;rN
h Þ; C

N is the 2nc submatrix with diagonal ð2	 2Þ blocks, CN
j ; 1pjpnc; given by

CN
j ¼ rN

j

cosNyj sinNyj

�sinNyj cosNyj

" #
; ð12Þ

and PN is a matrix equal to CN with r ¼ 1: In Eq. (11) symbols S; C and P refer to submatrices
listing eigenvalues belonging to stop, complex and pass bands respectively. The real wave vectors
entering Eqs. (10) and (11), whose complex counterparts enter Eqs. (A.1) and (A.2) in Appendix A,
represent the main computational difference between the proposed wave vector approach and the
traditional one.
Eq. (11) can be rearranged to follow the real wave propagation direction,

rB

lA

 !
¼

KN
r 0

0 KN
l

" #
rA

lB

 !
; ð13Þ

where KN
r ¼ diagðSN ; CN ; PNÞ; KN

l ¼ diagðSN ; CNÞ; rH ¼ ðrrH ; rcH ; ruHÞ and lH ¼ ðlrH ; lcHÞ; H ¼
A;B: It should be noticed that submatrices PN are not rearranged, since they are not affected by
ill-conditioning, thanks to the unit modulus of their eigenvalues. Therefore, rightward
propagation of the associated ru waves is considered, differently from the complex wave method.
The boundary conditions at the ends of the periodic structure expressed in terms of wave co-

ordinates read as

RHrH þ LH lH ¼ BHfH ; H ¼ A;B; ð14Þ

where BH are Boolean matrices and RH and LH are n 	 ðnr þ nc þ 2nuÞ and n 	 xðnr þ ncÞ
rectangular submatrices of U; respectively, varying according to the type of constraint and fH are
assigned ends’ forces and/or displacements. Substituting eventually Eqs. (13) into (14) leads to the
non-homogeneous problem

RA LAKN
l

RBKN
r LB

" #
rA

lB

 !
¼

BAfA

BBfB

 !
: ð15Þ

The wave co-ordinates at the intermediate nodes can be derived and transformed back to obtain
the response expressed by state variables; next, the response of the elements is readily evaluated as
a function of the ends’ displacements. However, while in the complex wave vectors approach the
real state vectors are obtained by summing up products of complex conjugate eigenvectors and
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amplitudes, in the real wave vectors approach, the real state vectors are obtained by taking
straight summation over products of real eigenvectors and amplitudes. Since the real eigenvectors
represent the real and imaginary parts of the complex ones, the associated real amplitudes are half
the real and imaginary parts of the complex amplitudes.
Similar to the complex wave formulation, the real one can be readily extended to piecewise

periodic structures by introducing the scattering matrix arising at the interface of dissimilar cells
as outlined in Ref. [9].

4. A simple illustrative example

In this section the proposed procedure is illustrated for a spring–mass chain (mono-coupled
system) already studied in Ref. [10] and shown in Fig. 2(a). It represents the discrete counterpart
of the problem discussed in Section 2. By considering the spring–mass chain composed by N
symmetric elements shown in Fig. 2(b), the transfer matrix reads as

T ¼
cos W �1

sin2 W cos W

" #
; ð16Þ

where cos W ¼ 1� b2 and sin W ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� b2

q
; b ¼ ðm=kÞ1=2o being the frequency parameter. The

transfer matrix eigenvalues are l1;2 ¼ e7iNW and the pass band frequency range is 0pWpp: In the
following subsections, the natural frequencies, modal shapes and forced response are determined
by using several approaches, namely: transfer matrix, complex wave vectors and real wave
vectors.

4.1. Natural frequencies

(a) Transfer matrix method. The transfer matrix of the whole chain is obtained by recursive
product:

TN ¼
cosNW �

sinNW
sin W

sinNW sin W cosNW

2
4

3
5: ð17Þ

Then, by imposing the boundary conditions, the natural frequencies are obtained from the
following equation:

sinNW sin W ¼ 0; from which W ¼ jp
N

with j ¼ 0; 1;y;N � 1: ð18Þ

Eq. (18) is plotted in Fig. 3.
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k

Fig. 2. Mono-coupled system: (a) spring–mass chain; (b) symmetric single unit.
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(b) Complex wave vector method. By applying Eq. (A.1), the complex wave vector method
provides with the following state vector transformation:

dk

fk

 !
¼

i

sin W
�

i

sin W
1 1

2
4

3
5 rk

lk

 !
: ð19Þ

Next, by imposing the boundary conditions (Eqs. (A.4) and (A.5)), a set of two equations is
obtained:

1 eiNW

eiNW 1

" #
rA

lB

 !
¼

0

0

 !
: ð20Þ

The characteristic equation of the 2	 2 boundary conditions’ matrix is

ðcos Wþ i sin WÞ2N ¼ cos 2NWþ i sin 2NW ¼ 1: ð21Þ

The natural frequencies are given by the zeros of both its real and imaginary parts, represented in
Fig. 3:

cos 2NW ¼ 1; from which W ¼ jp
N

sin 2NW ¼ 0; from which W ¼ jp
2N

with j ¼ 0; 1;y;N � 1; ð22Þ

and therefore coincide with the roots of Eq. (18). It must be noted that real and imaginary parts of
the characteristic equation cannot be individually zeroed, since while the former shows erroneous
double roots, the latter has zeros that are not roots of the set.
(c) Real wave vector method. According to Eq. (10), the state vector transformation is now given

by

dk

fk

 !
¼

0
1

sin W
1 0

2
4

3
5 r1;k

r2;k

 !
: ð23Þ
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Fig. 3. Natural frequencies of the four-bay spring–mass system: (thin line) transfer matrix; (thick and dashed lines) real

and imaginary parts of the complex wave vector method; (heavy line) real wave vector.
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By imposing the boundary conditions (Eqs. (14) and (15)), a set of two equations is obtained:

1 0

cosNW sinNW

" #
r1;A

r2;A

 !
¼

0

0

 !
: ð24Þ

The characteristic equation of the ð2	 2Þ boundary conditions’ matrix, plotted in Fig. 3, and the
natural frequencies are:

sinNW ¼ 0; from which W ¼ jp=N with j ¼ 0; 1;y;N � 1: ð25Þ

By summarizing, the example has shown the same issue discussed in Section 2. In particular, the
complex wave vector method leads to a complex characteristic equation (of the type of Eq. (5)) in
the real unknown o: When a numerical solution is required, computational problems arise; in
contrast, the real wave vector method is not affected by these drawbacks.

4.2. Modal shapes

(a) Transfer matrix method. Modal shapes are derived by first setting xA ¼ ð1; 0ÞT and then
obtaining xk ¼ TkxA; from which the modal vector at the generic node k reads

xk ¼ ðcos kW; sin kW sin WÞT: ð26Þ

(b) Complex wave vector method. From Eq. (20a), setting rA ¼ �1=2 i sin W; lB ¼ 1=2 i sin We�iNW

follows, and using rightward and leftward transmission, the complex wave co-ordinates at node k
are obtained

rk ¼ rAe
ikW; lk ¼ lBe

iðN�kÞW: ð27Þ

Then, by substituting into Eq. (19), the state vector reads

dk

fk

 !
¼

i

sin W
�

i

sin W
1 1

2
4

3
5 ak þ ibk

ak � ibk

 !
; ð28Þ

where

ak ¼ 1
2
sin W sin kW; bk ¼ �1

2
sin W cos kW; ð29Þ

and result (26) is recovered. It must be noted that since the real state is expressed by a linear
combination of two complex conjugate eigenvectors, the associated amplitudes must also be
complex conjugate, i.e. lk ¼ %rk: Therefore the only independent quantities are the real ðakÞ and
imaginary ðbkÞ parts of rk:
(c) Real wave vector method. From Eq. (24a), r1;A ¼ 0; r2;A ¼ sin W and using rightward

transmission, the real wave co-ordinates at node k are obtained:

r1

r2

 !
k

¼
cos kW sin kW

�sin kW cos kW

" #
r1

r2

 !
A

: ð30Þ
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Then, by substituting into Eq. (23), the state vector expression reads as

dk

fk

 !
¼

0
1

sin W
1 0

2
4

3
5 2ak

�2bk

 !
; ð31Þ

where ak and bk are given by Eq. (29), and the resulting state vector xk coincides with Eq. (26). In
Eq. (31) the real state is expressed by a linear combination of two real eigenvectors, so that the
associated amplitudes are also real and independent of each other. By comparing Eqs. (28) and
(31) the relation between complex and real amplitudes, according to the two described
approaches, can be readily deduced.

4.3. Forced vibrations

The forced response to a horizontal force applied at the left-hand boundary A of the chain is
determined.
(a) Transfer matrix method. From Eq. (6), with TN given by Eq. (17), by imposing the boundary

conditions fA ¼ F and fB ¼ 0; the state vector at the generic node k reads as

xk ¼
F cosðN � kÞW
sin W sinNW

;
F sinðN � kÞW

sinNW

� �T

; ð32Þ

(b) Complex wave vector method. Taking into account the force F at the boundary A; Eqs. (20)
become

1 eiNW

eiNW 1

" #
rA

lB

 !
¼

F

0

 !
: ð33Þ

Then, by following the same steps described in the above section for deriving the modal shapes, an
expression analogous to Eq. (28) is obtained, where

ak ¼ F
sinðN � kÞW
2 sinNW

; bk ¼ �F
cosðN � kÞW
2 sinNW

: ð34Þ

(c) Real wave vector method. Eqs. (24) modify:

1 0

cosNW sinNW

" #
r1;A

r2;A

 !
¼

F

0

 !
: ð35Þ

By also following in this case the previously described steps, an expression analogous to (31) is
obtained, in which ak and bk are given by Eqs. (34). Comments similar to the free response case
hold.
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Fig. 4. Uniform Euler beam on evenly spaced springs.
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5. Numerical results

Bi-coupled periodic structures whose repetitive elements, as sketched in Fig. 4, are given by N

Euler beams resting on elastic supports with translational stiffness kt=2 and distributed mass m are
considered. The length and flexural stiffness of the beams are l and EI respectively. For such
periodic elements, the state vector at the coupling point k is given by xk ¼ ðvk;jk;Vk;MkÞ

T; where
v; f and V ; M represent the generalized displacement and forces components respectively. The
selected control parameters governing the propagation properties of a cell are the non-
dimensional frequency and spring stiffness defined as b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo2l4=ðEIÞ4

p
and k ¼ ktl

3=EI . Free
wave propagation characteristics along the periodic structure are governed by the four eigenvalues
of the transfer matrix T: The regions where both the pairs of eigenvalues lie on the unit circle are
referred to as pass–pass (PP); the regions where only one pair of eigenvalues lies on the unit circle
while the other pair is real are referred to as pass–stop (PS); the regions where only real pairs of
eigenvalues occur are the stop–stop (SS) domains. Moreover, complex regions (C) exist where the
eigenvalues are complex conjugate. In the pass regions waves propagate harmonically without
attenuation, whereas in the stop regions waves decay; harmonic propagation with attenuation
occurs in the complex regions. In Ref. [11], the boundaries of such propagation regions have been
analytically derived on the plane of physical parameters k; b: According to type of propagation
regions, the real transfer matrix for wave vectors, defined by equation (11), takes the forms shown
in Table 2.
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Table 2

Global wave transfer matrix according to the propagation region

Pass–pass Pass–stop Stop–stop Complex

PN
1 0

0 PN
2

� �
lN
1 0 0

0 PN
1 0

0 0 l�N
1

2
64

3
75 lN

1 0 0 0

0 lN
2 0 0

0 0 l�N
2 0

0 0 0 l�N
1

2
6664

3
7775

CN
1 0

0 C�N
1

� �

4.22 4.63 5.04 5.46 5.87 6.28
�

4.2 4.3 4.4 4.5

4.22 4.63 5.04 5.46 5.87 6.28
�

4.2 4.3 4.4 4.5

(a) (b)

Fig. 5. Determinant of the boundary conditions’ matrix for a 20-bay beam, k ¼ 113:75; b within the first PS:

(a) complex wave vectors, (thick line) real part, (dashed line) imaginary part; (b) real wave vectors.
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5.1. Free vibrations

For symmetric bi-coupled elements it is well known that natural frequencies belong to PS and
PP bands; moreover, within each band, they are as many as the number of elements composing
the whole periodic structure. By zeroing the determinant of the system matrix in Eqs. (15), the
natural frequencies of the bi-coupled periodic structure are obtained. In Figs. 5a and b the
determinants of the system matrices for a 20-bay beam, with sliding boundary conditions at both
ends, obtained through the complex and real wave vector approaches, respectively, are shown; the
frequency range coincides with the first PS ð4:220pbp2pÞ for k ¼ 113:75: It must be noted that in
the complex wave vector case (Fig. 5(a)), similar to the example of Section 4 (see Fig. 3), the
natural frequencies occur whenever the real part of the determinant is tangent to the abscissa, thus
implying a double root. This circumstance entails further computational difficulties. In contrast,
the same roots are easily found in the real wave vector method (Fig. 5(b)). As expected, the same
analysis carried out through the transfer matrix approach fails; indeed, numerical tests have
shown that ill-conditioning occurs for beams with more than five elements. In Figs. 6(a) and (b)
the determinants relevant to the unique PP band frequency range ð3:092pbppÞ are shown.
Within this band the tangency to the b-axis of the real part observed in the PS band disappears
and simultaneous crossings of both real and imaginary parts determine the natural frequencies
(Fig. 6(a)). However, zeros of each function are found which are not root of the set (henceforth
referred to as ‘false’ roots). Regardless of the number of elements, the transfer matrix ill-
conditioning does not arise for frequencies belonging to PP bands, since its eigenvalues lie on the
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Fig. 6. Determinant of the boundary conditions’ matrix for a 20-bay beam, k ¼ 113:75; b within the PP: (a) complex

wave vectors, (thick line) real part, (dashed line) imaginary part; (b) real wave vectors; (c) transfer matrix.
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unit circle; therefore the determinant of the 20-bay beam system matrix obtained through the
transfer matrix approach also furnishes correct results (see Fig. 6(c)).
A further formulation, still involving complex wave propagation, has been proposed in

literature to determine the natural frequencies of periodic structures [3]. It relies on the phase
closure principle stating that natural frequencies occur when all wave modes complete a
circumnavigation of the structure with a total phase change of 2kp: Accordingly, at an N-bay
beam resonance, the following equation must be satisfied:

det½KNR�1
A LAKNL�1

B RB � I� ¼ 0; ð36Þ

where the matrices RH ; LH ; H ¼ A;B; were introduced in the boundary conditions, Eq. (14), K is
a 2	 2 diagonal matrix collecting the eigenvalues with jljp1 and I is the identity matrix. Fig. 7 is
a plot of the determinant of Eq. (36) for the 20-bay beam so far considered. As expected, the
results are analogous to those obtained with the complex wave vector method due to the common
wave nature. Indeed, double roots of the real part occur in the first PS band (Fig. 7(a)) while false
roots of both real and imaginary parts of the determinant are again found within the PP band
(Fig. 7(b)). The errors reported in Ref. [3] for closely spaced natural frequencies did not take place
in the present analysis in spite of frequency intervals twice as narrow ðB0:0155 vs. B0:036 Hz)
within the PP band.
In Table 3 the first 40 natural frequencies of the 20-bay beam with sliding ends are reported; the

bay beam was assumed to have a bending stiffness EI ¼ 10 N m2; mass per unit length m ¼
0:8 N=m; length l ¼ 1 m and spring translational stiffness kt ¼ 1137:5 N=m: The natural
frequencies obtained through both the wave vectors approaches are in perfect agreement and,
as expected, the first 20 natural frequencies belong to the PP band (9.56, 9:87 Hz) and the
following 20 to the first PS (17.81, 39:48 Hz). Moreover, due to the sliding ends’ constraints, the
last natural frequency in the PP band and the first natural frequency in the first PS band coincide
with the PP right boundary and PS left boundary respectively. However, in the complex
approach, both real and imaginary parts of the determinant of the system matrix must be
considered due to false roots arising in both the PP and PS bands. In particular, within the PP
band, false roots of the real and imaginary parts have been found at 9.67, 9.80, 9:86 Hz and 9.59,
9.74, 9:84 Hz respectively. As far as the first PS, false roots of the imaginary part occur every
other true root, while all the natural frequencies determined by the real part correspond to double
roots. Moreover, within the PP band, the natural frequencies obtained by the wave vector
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line) imaginary part; (b) b within the PP.
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methods coincide with those obtained through the transfer matrix. As expected, the latter
approach fails inside the first PS band. The high modal density significantly affects the accuracy of
the finite element results. Indeed, besides slight differences in most of the natural frequencies, few
of them fall outside the PP and PS bands. The erroneous natural frequencies obtained through the
finite element analysis are confirmed by the associated mode shapes violating the structural
symmetry, as shown in Fig. 8 for the first mode.
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Fig. 8. First mode of the 20-bay beam: (a) wave vectors, o ¼ 9:56 Hz; (b) finite element, o ¼ 9:59 Hz:

Table 3

Natural frequencies of the 20-bay beam with sliding–sliding ends

Wave vectors Transfer matrix Finite element

9.56 17.81 9.56 — 9.59 12.74

9.56 17.90 9.56 — 9.60 13.41

9.58 18.16 9.58 — 9.62 15.53

9.58 18.58 9.58 — 9.64 17.25

9.60 19.16 9.60 — 9.66 18.42

9.61 19.86 9.61 — 9.67 18.67

9.64 20.69 9.64 — 9.71 19.72

9.65 21.63 9.65 — 9.72 20.70

9.68 22.66 9.68 — 9.74 21.98

9.71 23.78 9.71 — 9.75 23.21

9.72 24.99 9.72 — 9.76 24.44

9.76 26.27 9.76 — 9.79 25.11

9.77 27.63 9.77 — 9.80 28.08

9.80 29.05 9.80 — 9.87 29.47

9.82 30.54 9.82 — 9.87 31.06

9.83 32.09 9.83 — 9.92 31.53

9.85 33.69 9.85 — 10.00 33.45

9.86 35.33 9.86 — 10.37 34.01

9.86 36.99 9.86 — 11.53 36.88

9.87 38.58 9.87 — 12.22 38.51
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5.2. Forced vibrations

The dynamics of the 20-bay beam has also been studied under a sweeping harmonic excitation
applied at node A (see Fig. 1). Fig. 9 shows the displacement dynamic magnification factors DB at
node B obtained through the real wave vectors approach. In particular, Fig. 9(a) refers to the
response in the first PS band, while Fig. 9(b) refers to the PP band. For such an undamped
structure the peaks of the resonance amplifications are ideally infinite.The different scales of both
frequency and amplification ranges must be noticed.

6. Conclusions

A computational scheme, alternative to the well-known complex wave vector approach, has
been proposed for dynamic analysis of long undamped periodic structures. The method has been
suggested by an in-depth analysis of the source of some numerical difficulties encountered in
literature in searching natural frequencies by the complex wave method. The cause has been
ascribed here to the originally real problem being ill-posed, when it is recast in complex form. The
new method has been conceived to take advantage of the main features of both transfer matrix
and complex wave vectors approaches. Indeed, on one hand, the real transfer matrix for state
vectors is transformed to a transfer matrix for wave vectors which is kept real, thus avoiding an
ill-posed problem. On the other hand, transfer matrix ill-conditioning is avoided by using wave
vectors arranged in order to let the computation proceed in the direction of wave motion. The
method has been tested for a simple mono-coupled system and for a more complex structure. It
has been found that the procedure is efficient and overcomes the methodological and numerical
difficulties exhibited by other methods. However, the method entails an algorithm adapting to the
type of propagation band, not required by the complex wave vector approach, which is
independent of the propagation bands.
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Appendix A. Complex wave vector approach

The main steps of the complex wave vector approach [1,2] are reported. The 2n state vector at
the generic point k can be transformed to complex wave vector through the matrix U; whose
columns are complex eigenvectors of T; as follows:

dk

fk

 !
¼ U

rk

lk

 !
: ðA:1Þ

Substituting Eq. (A.1) into Eq. (6) gives

rB

lB

 !
¼ U�1TNU

rA

lA

 !
¼

KN 0

0 K�N

" #
rA

lA

 !
; ðA:2Þ

where K is a diagonal matrix collecting the eigenvalues with jljp1: Rearranging Eq. (A.2) to
follow the waves propagation direction, it follows:

rB

lA

 !
¼

KN 0

0 KN

" #
rA

lB

 !
; ðA:3Þ

Eqs. (A.2) and (A.3) represent the transformation of the real transfer matrix for state vectors to
the complex transfer matrix for wave vectors. The boundary conditions at the ends of the periodic
chain in terms of wave co-ordinates read as

RHrH þ LH lH ¼ BHfH H ¼ A;B; ðA:4Þ

where BH are Boolean matrices while RH and LH are square submatrices of U varying according
to the type of constraint and fH are assigned ends’ forces and/or displacements. The core of the
computational scheme consists of solving the sets of equations (A.3) and (A.4) by condensing the
whole unknown wave vector in the sole components entering the domain. Using Eqs. (A.3) to
eliminate the outgoing waves at the ends, the resolving equations (A.4) become

RA LAKN

RBKN LB

" #
rA

lB

 !
¼

BAfA

BBfB

 !
: ðA:5Þ

From the knowledge of the wave co-ordinates at the boundaries A and B; the response expressed
by state variables is derived. The homogeneous form of problem (A.5) furnishes the natural
frequencies and the ‘mode’ ðrA; lBÞ

T:
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